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We present a study of the Burgers equation in one and two dimensions d =1,2 following the analytic
approach indicated in a previous paper [S. E. Esipov and T. J. Newman, Phys. Rev. E 48, 1046 (1993)].
For the problem of initial-condition decay we consider two classes of initial-condition distributions
Qu~cxp[—(1/4D)f(Vh)2dx], where the h field is unbounded (Q,) or bounded (Q,,|4| <H). In one
dimension these distributions give examples of nondegenerate and degenerate Burgers models of tur-
bulence, respectively. Avoiding the replica trick and using an integral representation of the logarithm
we study the exact analytically tractable field theory which has d =2 as a critical dimension. It is shown
that the degenerate one-dimensional case has three stages of decay, when the kinetic-energy density di-
minishes with time as ¢ 72’3, t 72, and ¢ 3’2, contrary to the predictions of the similarity hypothesis based
on the second-order correlator of the distribution. In two dimensions we find the kinetic-energy decay
which is proportional to ¢ “'In~!/%(¢). It is shown that the pure diffusion equation with the Q,-type ini-
tial condition has nontrivial energy decay exponents indicating connection with the O(2) nonlinear o
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model.

PACS number(s): 05.40.+j, 47.10.+g, 68.10.Jy

INTRODUCTION

The history of the Burgers equation [2] shows that the
connection between Burgers turbulence and Navier-
Stokes (NS) turbulence is a complicated issue. Citing the
recent paper by Gotoh and Kraichnan [3], “by now it is
clear that the differences between Burgers dynamics and
NS dynamics are at least as significant as the similari-
ties.” This statement is made with respect to the one-
dimensional version of the Burgers equation. It is also
clear that the Burgers equation above one dimension has
less relevance to real turbulence; for instance, the kinetic
energy is not conserved in the inviscid limit. In its turn,
the Burgers equation, being the simplest diffusive non-
linear equation, has a number of other physical applica-
tions to date. We may refer to the comparative usage in a
renormalization-group (RG) study of NS equations [4],
the field of interface growth in the framework of the
Kardar-Parisi-Zhang (KPZ) equation [5], models of the
large-scale structure of the Universe [6], solid-state-
physics applications [7], etc. As in NS turbulence there
are different means to excite the turbulent behavior. We
think that a simpler problem to study is the relaxation of
random initial conditions rather than the random-stirring
(external noise) problem.

The present paper is a continuation of our recent work
on Burgers turbulence and interface growth [1]. In Ref.
[1] we have solved the problem for discrete initial condi-
tions and indicated a field-theoretical approach suitable
for continuous distributions. The field theory for the
Burgers equation with continuous initial conditions
resembles the so-called Liouville model [8] of strings and
was applied to the nonbounded Gaussian distribution of
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initial conditions in one dimension. Studying the corre-
sponding Schrodinger equation we essentially reproduced
the Burgers result for the kinetic-energy decay [2]
E(t)~t723,

The present work is partly devoted to the study of de-
generate Burgers turbulence in one dimension and also
contains an investigation of the two-dimensional case.
We only study the decay of kinetic energy, the simplest
local correlator. Our results in the degenerate d =1 case
are in disagreement with the previously reported
E (t)~t ! transients [6,9] whose derivation was based on
the so-called similarity hypothesis involving the second-
order correlator (Loitsyanskii correlator) of the distribu-
tion. The explanation is that the similarity hypothesis is
based on dimensional arguments and in the degenerate
case the Loitsyanskii correlator is zero by definition,
whereas it is impossible to describe initial conditions
without any parameter. With the distribution Q, we find
that energy decays as E(t)~¢ 2/ as in the nondegen-
erate regime until the degeneracy becomes important at
some crossover time. After that time the decay proceeds
faster, E(z)~t 2 for some time and (if viscosity is not
equal to zero exactly) has a second crossover to the pure-
ly diffusive decay E (t)~t /%

Studying the Burgers equation it is natural to compare
its behavior with and distinguish it from pure diffusion.
This implies that for any of the cases considered it is the
diffusion equation to be solved first. Consequently, as a
by-product of the method of Green’s functionals, we
present the study of the diffusion equation in d =2 for the
bounded distribution Q,. The exponent for the energy-
decay power law has a continuous dependence on the pa-
rameter D/H? (see below) up to a critical value
D /H?=8 /7 when the exponent stops varying. This ob-
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servation implies some connection with the O(2) non-
linear o model [10,11].

The Burgers equation in two dimensions leads to func-
tional equations for Green’s functionals. The inviscid
limit can be solved and the results show an explicit
dependence upon short-distance cutoff. The kinetic ener-
gy decays as E (t)~t ~'In"1/%(¢) for the Q, distribution.
The onset of “boundness” is manifested by a sudden drop
of the kinetic energy to zero (in the inviscid limit), thus
showing some resemblance to the one-dimensional case.
The reported results are beyond the reach of scaling argu-
ments [12], which are helpful in the case of single power-
law dependences.

I. THE BURGERS EQUATION AS A FIELD THEORY

We briefly rederive the field theory for the problem of
the Burgers equation with random initial conditions in d
dimensions for the sake of completeness. Consider the
Burgers equation [2]

3, v=vVv—1yy? (1.1)

which with the help of the velocity potential
Vh = —\" v gives an equation
9h =vV?h +%(Vh)2, (1.2)

also known as the deterministic KPZ equation [5]. The
parameter A is introduced for convenience; it has dimen-
sionality of length over time, and henceforth 4 has the
dimensionality of length. The Hopf-Cole transformation
to the new function exp(Ah /2v) results in a diffusion
equation which is solved for a given (transformed) initial
condition. The solution in terms of some initial &, reads
hx0="21n [dyg(x—ynepaholy), (1)
where g(x,t)=(4mvt)”42exp[—(x%/4vt)] is the heat
kernel (Green’s function of the diffusion equation). The
kinetic-energy density that we study here is defined as
E(t)=(A*/2){(Vh)*)=A3,{h ), where we used transla-
tional invariance to drop the diffusion term. Using an in-
tegral representation of the logarithm in (1.3) we obtain

(h)= f”d” T4 (1)) (1.4)
and
= odu o,
E(t)-2v8,f0 e =], (1.5)
where
Wu,n)= [Dlhylexp{ —S[ho;u,1]} . (1.6)

This is written in the form of a field theory defined by the
following action:

Sthou,t]= [ di i(Vho)2+ug(x,t)eah°() (1.7)

It resembles closely the Liouville model in string theory
but differs by the heat kernel g, which makes the poten-

tial x dependent (i.e., “time” dependent). The one-
dimensional case of this theory was considered in Ref.

(1].
II. DEGENERACY OF BURGERS TURBULENCE

We are interested in different classes of distribution of
random initial conditions which evolve unlike each other.
We have had such an example in the case of discrete ini-
tial condition studied in Ref. [1]. In this section we
present a comparison between bounded and unbounded
Gaussian distributions of initial conditions and relate
them to the degeneracy of the Burgers turbulence in one
dimension.

The degeneracy of turbulence is related to the
Loitsyanskii correlator D’'. By analogy with the Navier-
Stokes turbulence the Loitsyanskii correlator (in one di-
mension) is defined as [13,2,6,9]

D= Zsz dx (v (x)v(0)) . 2.1)

It is known that the physics of (Burgers) turbulence is
different depending on whether or not this correlator is
zero. Usage of the velocity potential & makes it easier to
understand the physical sense of D’. Indeed, take into
account the adopted Gaussian initial conditions Q,,
given by

Qlhgl~exp|— 2.2)

—Df(Vho)zddx

and consider the correlation of the velocity potential h
following Burgers [2]. We have hy(x)—hy(0)
=—)\"! f ov dx. The two-point correlator of interest is
given by

([ho(x)—ho(0)]?)
—_ -2 x x ’ ”n ’ "
A fo fov(x Wwi(x")dx'dx
=2x—2f0"dz(x —2){(v(z)v(0))=2D"'x +0O(1) .
2.3)

Consequently all even correlators are
([ho(x)—ho(0)]*")=(2n —1M(2D'x)"+0(x""!) and

Burgers concludes that the distribution of &
at a given distance x is Gaussian, P(h,,h,x)
=(47D’|x|)"2exp[ —(h,—h,)*/4D’'|x|]. This specu-

lation relies only on the fact that the problem is transla-
tionally invariant and the Loitsyanskii correlator D’ is
nonzero, while its integral converges quickly. We can see
now that the nonbounded and bounded 4 distributions
(2.2) belong to nonzero and zero D’ distributions, respec-
tively, and thus give representative examples of degen-
erate and nondegenerate Burgers turbulence. The reader
may be interested in a direct calculation of D’ using (2.2)
which should give D'=D for Q, and D'=0 for Q, distri-
butions. As an example we present such a derivation for
the Q, case in Sec. IV.

In two dimensions the distributions Q,; and Q, are still
different. The interface A (x) is logarithmically rough
(the distribution P(h,,h,,x) is obtained in Sec. V]. We
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shall not make use of the Loitsyanskii correlator nor
define the degeneracy above one dimension because of the
lack of similarity with NS equations. Above two dimen-
sions the A field is bounded by geometrical reasons and
there is little difference between @, and Q, distributions.
The bound stems from the fact that the probability of
finding the interface height h, at distance x from the
given height h, is Gaussian

7.’.d/ZaZ—'d(hZ __hl )2
DT(—1+4d/2)(a* 2 —x*"2)
2.4)

P(hy,hy x)~exp | —

a is the required lattice cutoff. The special case of a
bound H which is smaller than the cutoff-related value
D'/2q1749/2 will not be considered in this paper.

}\2
202m)%

A’Z
E(z)=7<(Vh)2>=—

Al
202m)%

The functional integral
(ho(k)h(k'))
= [Dlholho(K)hg(K)
1

X exp —mszho(k)ho(—k)ddk
(3.4)
equals
(ho(k)hy(Kk'))=2Dk ~X27)%(k +k') (3.5)
and gives
2
E(t)z@%t_D)d_ﬁ . (3.6)

IV. THE DIFFUSION EQUATION:
THE BOUNDED RANDOM INITIAL CONDITION
IN ONE DIMENSION

This is still a simple but algebraically consuming calcu-
lation which uses mirror imaging in treating bounded
Gaussian initial conditions. The representation in terms
of Fourier modes is less convenient and the calculation is
performed in the original space. The connection between
the kinetic-energy density and the correlator of the initial
field in d dimensions is
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III. THE DIFFUSION EQUATION:
THE NONBOUNDED RANDOM INITIAL CONDITION

The solution of the diffusion equation corresponding to
(1.2) for a given initial condition is

h(x,0)= [d g(x—y,Dholy) . (3.1)

For the nonbounded Gaussian distribution Q,; of the type
(2.2) one can calculate different correlators by using
Fourier modes
1 .
ho(x)= e™®*h (k)d% ,
0 (2m)? f

h(k)= [ e ®*ho(x)d% .

The solution of the diffusion equation (3.1) is given by
h(k,t)=hg(k)e *k't | (3.2)

In terms of Fourier modes the kinetic-energy density is

[ d% ddk'kk'e ™ (h (k,Dh (k1))

fddk ddkrkkleix-(k+k')—v(k2+k’2)t<ho(k)ho(kl)) . (3.3)

2
E(z)=2‘2—<(vm2>

)»2
=5 [ [dyidy[Ve(y))Vg ()]

X holyho(yy)) . (4.1)
Integrating over the half-sum |y, +y,| and angles, we ob-
tain the following expression:
2dA?
E(t)=
[(d /2)(8vt) 7472
X °°d d—1,—r2/8vt
f() rr e

2
4dvt

In one dimension the weight of a given “interface,” or
rather trajectory, which starts at some hy(0)=h, and
ends at hy(x)=h,,

G(hy,hy3xy,x1)

2
dy

holxy)=h,

= Jngx=h, Diholexp

1 *2

dh,
4D Y x,

dy

’

4.3)

obeys the diffusion equation in (A,x) space [not to be con-
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fused with the original (x,?) space]

axG =iDath N 4.4)

where h =h,,, x =x,,, and * correspond to forward
(h=h, and x =x,) and backward (h =h,; and x =x,)
equations, respectively. Equation (4.4) is useful for im-
posing the constraint |h| < H explicitly. Namely, we in-
troduce boundary conditions 9, G(tH,x)=0 of zero flux
through the boundaries and consider the equation in the
stripe |h| <H. In order to solve the initial condition
problem G (h,0)=8(h —h,), we regard the +H boun-
daries as mirrors and sum the usual Green’s functions of
the unconstrained Eq. (4.4) over images

Gslhy,h,x)= 3

m=—o

[G(hy—h,+4Hm,x)

+G(hy+h,—2H +4Hm,x)] ,
4.5)
where
G (h,x)=(4wDx)"'"2exp(—h%/4Dx) . (4.6)

According to (4.2) one needs to evaluate the correlator
{ho(x)hy(0)), which is given by

1 H rH
(ho(x)ho(0)) = - f_H f_Hdh,dhzhlthz(hz,h,,x) :

4.7)

The factor 1/2H is due to averaging over possible values
of h; which are clearly uniform in [ —H, H]. Performing
the elementary integration and making use of Appendix
A we find

. m2D|x|(2n +1)2
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In the integral (4.2), consider the late time asymptotic
t>>H*/D?v; then

3202H*
7D 2mvt)3?

The exact formula containing a sum over parabolic
cylinder functions can be derived from (4.2) and (4.8) for
arbitrary times. Summarizing, at short times
t <<H*/D%, we have energy decay given by Eq. (3.6),
E(t)«<t~ 12, and after the crossover the decay proceeds
faster, E (¢) <t 372,

The correlator (4.8) allows the explicit calculation of
the Loitsyanskii correlator (2.1). One finds

(v(x)(0))=—21%,, (ho(x)hy(0))

E(t)= (4.9

=2DA%8(x)
2D 2 72D|x|(2n +1)?
- 2 2 €Xp |~ 2
H?* %, 4H

(4.10)

The sum can be written by using the elliptic function 6,.
Performing the remaining integration over x in (2.1) we
find that the Brownian § correlator just cancels the non-
local part generated by the |h| <H constraint, so that
finally D'=0. The geometrical interpretation of degen-
eracy leads naturally to the potential associated with fluc-
tuations of A field. The Q, distribution corresponds to a
potential well with infinite walls at |h|=H.

V. THE GREEN’S FUNCTIONAL IN TWO DIMENSIONS

We continue our preliminary study of diffusion in or-
der to develop the method and have linear results for

ex
32H? & P 4H? comparison with the Burgers equation. The derivation of
(ho(x)ho(0)) = r b (2n +1)* the Green’s functional is analogous to the oscillator prob-
n=0 lem in quantum mechanics [14,11]. We return to Egs.
(4.8) (1.6) and (1.7) and consider a functional
|
h($,y,)=h,() y
Hha( @) Bhyapi)= [, S, Diklexp | =0 [ Ty dy [Mdg(var | . 5.1

We prefer to use polar system of coordinates where
“time” is the radius y. In what follows the adjective
“functional” will be omitted in many cases.

The proper normalization of F will be specified later;
we need to evaluate F first. Introducing Fourier modes
for angular dependence

= 3 kg =1 r2 —ik¢
h(d) kzz_whke , = fo doh(de (5.2)

and changing variables to real and imaginary parts
h . =a; LiBy, we rewrite (5.1) as

57[h2(¢),h1(¢);)’2,}’1]= H Ik(ak )Ik(ﬁk) s (53)
k=0

where massive one-dimensional theories are defined for
each mode

Y
Ik(}’)=fh250[y]exp ————(Hgkm
2
b L) a

Xfyldyy —ajy’—

2,,2
L ] (5.4)
y

where 8, is the Kronecker symbol. To evaluate this
Gaussian integral we first determine the classical trajecto-
ry defined by the Euler equation
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2.0 2., — k
YUty k=0, 59 = LY =2r7af ] (5.9)
This equation has the solution
for nonzero k and
y=Ciy*+Coy 7, (5.6 )
) ) 7 (Y2—vy)
with two constants of integration to satisfy the boundary 2D y (5.10)
conditions y(y,)=v, and ¥(y,)=y,. The solution is In—=>
hy’,‘—mé‘ yivs yi—vws a
y(y)= Vi yk+ z K ok - (5.7)  for the zeroth mode. Here the functions of stereographic
yi* y yYi 72 projection are introduced
The zeroth mode k =0 has a different trajectory, £.=r2 D)/ =1, f.=2r/(r2—1),
r=,/y)* (.11
vy, —yny, v,y 2
y(y)= 5 + Iny . (5.8)  and
2
In— In—
» 2 fi=fi=1. (5.12)
Calculating the classic action we get Returning to the functional one gets
|
:7 h h . ]—C W(az’o—al'o)z
[ 2113V, 01 exXp 2D ln(yz/yl)
k= 4
X exp 2 L[ (af x +BY ka3 B ) f s — 2@y kg i By Bk )f ] ] ) (5.13)
or, in terms of the original Fourier modes,
o wk
Flhy,hy;y2,911=Cexp > ?[(hl,kh1,~k+hz,khz,—k)fs'(hl,khz,—k+h1,—khz,k)fc]] . (5.14)
k=—o

Note that the factors kf; . are even in k and have proper limits, so that the summation in (5.14) is expanded to all in-
tegers, including k =0.

Integrating F over (say) the final field 4,, one finds that it is not normalized. The reason is that the representations
(5.3) and (5.4) describe a massive theory and classic action becomes zero only if all 4, , =0 for k0. The zeroth mode
can be independently normalized in Eq. (5.14). Other modes, if normalized forcibly, give rise to inconvenient nonlocal
factors which do not ensure convolution properties. Thus one has to perform calculation with the functional F and
normalize the answer for all nonzero modes with respect to the bare theory at the very end of the calculation. With this
in mind & can be considered as the Green’s functional.

We then derive the differential equation which the integrals (5.1) and (5.14) satisfy. In complete analogy with the
one-dimensional case [14] we consider a small increment y, +8y and the corresponding variation of the field 4,:

L
41)2f2 s

Expanding F[h,+7,k,;y,,v,] to second order in the variation 7 and integrating out 7, one finds that the linear term in
7 vanishes and the second-order derivative is nonzero only if the arguments of the &,(¢) functions are equal. Expand-
ing also the &y dependence to the first order, we finally obtain

2
27r
f Eh—2—4—Dy "dg ||, (5.16)

217

4D6y

Flhy+n,h 5y, +0y,p,]1= fi) Flhy+n,h l,yz,yl]exp[ ' . (5.15)

where the subscript 2 can be omitted. We shall use the symbolic notation for the diffusion operator of closed strings
and write Eq. (5.16) as

3, 7=DF . (5.17)

Clearly, the normalization condition is not satisfied: Eq. (5.16) contains a decay term. The solution of Eq. (5.16) is

2D

172

, wk

Flhyhy3v2,311=C 1 CXP{_—[(hxkhl—k‘i'hz kha —k)fs— lkhz,—k+h1,—kh2,k)fc] ’ (5.18)
k
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where C’ is now independent of h,,h,,y,,y,. This for-
mula was found by T. J. Newman and it contains the ex-
plicit prefactor of the functional F (5.14). The prefactor
can be alternatively found by computing Gaussian fluc-
tuations around the classic trajectory. With the help of
the prefactor the convolution property can be proved

Flhy by 1= [ DIA31F g, hs595,95]

XFhs,hy;y3.01] - (5.19)
The following identities are useful:
FeWs /Y Dfe 2 /)3y )+ fi (2 /p3)]
=fcy2/y1),
(5.20)

fsz(J’3/J’1)_fsz(J’2/.V3)=fc2(J’2/J’1) .

The Green’s functional (5.18) is connecting angular
h (¢) profiles between two nonzero radial times y,; and y,,
y2>p,. In some cases we shall need to set y, =0. The
logarithmic dependence in (5.18) leads to a divergence
here. Divergence indicates that the weight (V4)? in the
action is insufficient to ensure convergence of the func-
tional. This problem is usually resolved by introducing
the uv cutoff a. In a proper field theory it is anticipated
that the cutoff present in bare values must be eliminated
by renormalization when interaction is included. Howev-
er, there is no reason to expect that the Burgers tur-
bulence is a proper field theory.

In some cases we shall need the angular part of the
Green’s functional (5.18) to be integrated out. This hap-
pens, for example, when one calculates the two-point
correlator (h(x)h(0)). Although this correlator does
not formally exist in the unbounded case, it is useful to
define the probability P (h,,h,x) of arriving at h (x)=h,
provided that A (0)=h,. It is given by the integral (to be
normalized)

P(hy,hy,x)~ [ DLk, ($)1F[hy($),h,5x,a]

X 8[hy(do)—h] -

It is understood in Eq. (5.21) that the two points needed
to define P(h,,h,x) are the origin and (x,¢,) in polar
coordinates of (5.18). The angle ¢, is arbitrary. Ex-
ponentiating the § function and performing Gaussian in-
tegration one finds [cf. (2.4)] the two-point probability

(5.21)

P(hyhyyx) = —e—— mihy —hy
2 D in(x/a) 0| 4DIn(x/a) |’
(5.22)

with the obvious normalizing prefactor. This function
obeys a diffusionlike partial differential equation,

ap=25.p, (5.23)
mX

with a cutoff at small x, x =a. Equation (5.23) describes
a logarithmically wandering interface [15].
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VI. THE DIFFUSION EQUATION:
THE BOUNDED RANDOM INITIAL CONDITION
IN TWO DIMENSIONS

In this section we derive the exponents for the kinetic-
energy decay in two dimensions and obtain the behavior
resembling the O (2) nonlinear o model after the onset of
bounded properties in the initial condition. The method
of mirror images is again useful. Due to translational in-
variance and isotropy of the problem the only correlator
that we need is {4 (x)h (0)). The probability P(h,,h,x)
given by Eq. (5.22) is sufficient to perform the calculation
if used instead of G (h,x), Eq. (4.6). Function P can be
obtained from G by replacements D—D /7 and
x — In(x /a). The correlator (4.8) takes the form

—aD(2n +1)2/4H?

32H* 2 1
(ho(x)ho(0))= —
oo * ,,2='0 2n+1)*|a
6.1
Integration in (4.2) with the low limit being x =a yields
2072
E=3Hg |8 6.2)
vt a
with the function
(x) ® x —s(m) {I‘[l (m) _1]
x)= —_— —s(m),x
£ ,,,Ezo 2m +1)*

—T[2—s(m),x ']} (6.3)

and s(m)=7wD(2m +1)?/8H?. T'(a,b) is the incomplete
gamma function. The limit vt >>a? appears to be rich
and is studied in Appendix B. Following Appendix B
consider the following cases.

(i) D/H?<8/m. Using (B1) we get

—nD/8H?

2
A°D r

1r3 vt

wD
8H?

vt

a2

E(1)=

1._

o< 1TD/RH (6.4)
The decay exponent depends linearly upon the parameter
D /H?* and changes from — 1 (cf. nonbounded case) down
to —2 at the critical value D /H*=8/m. Note that the
corrections to Eq. (6.4) are of the order of ¢t ~!7(™ g0
that there is an accumulation point at D /H*=0. To get
the prefactor in the limit D /H2—0 [which is, of course,
given by (3.6)] it is easier to return to the integral (4.2).
The following formula is helpful

fo‘”dg(g—ne-flng=1 .

(ii) D/H*=8/m. There is a logarithmic correction in
the leading order

AaH
ﬂzvt

(iii) D /H?> 8 /7. Using (B3) and (B4) one finds

2
8vt

a?

E(t)= In (6.5)




2076 SERGEI E. ESIPOV 49

2
1 | AaH? T
E -_— O T
(1) A ” s(0) tan V500
_ms) 7|
2 24 xpTe, (6.6)

We note that the dependence of the decay exponent on
the parameter D /H? is similar to the O(2) nonlinear o
model [10,11]. This similarity is not complete, however.
Recall that the spin direction, which distribution is de-
scribed by Q,, is a cyclic variable, like our mirror imaged
field hy. At nonzero temperature (in our case, at nonzero
D) there exist vortex excitations which interact like a
Coulomb gas. For our field A this would mean the pres-
ence of point defects in the vicinity of which
ho(y,¢)=2H¢. The velocity field v(y,4)=—(1/y)e, is
not curl-free. Recall now that the absence of vorticity
was assumed by Burgers when he “derived” his equation
from the NS equation. To make a consistent comparison
with the Burgers equation we avoid vorticity at all stages.
Other applications such as nonlinear heat flow and inter-
face growth also do not lead to point defects under usual
circumstances. Consequently, our correlators behave as
low-temperature correlators in the o model [10,11]. To
show this, one may use the probability P(k,,h,x) to cal-
culate the average {cos(h,—h;)) usually considered in
spin models. It is given by

(cos(hy—h,))
— D /H?
_L|x T sty
2 |a Lo mH(2n +1)2—47?
—7D(2n+1)2/4H?
% | X
a
—nD/4H?
S ) . (6.7
x— o Qg

This correlator cannot diminish steeper than x ~? (see

Ref. [11]) and therefore D /H?=8 /7 is the largest value
of D/H? when (6.7) (and the distribution Q,) represents
the spin model. This is precisely the transition value of
D/H? found above. It is eight times larger than the
Kosterlitz-Thouless transition temperature [11] (to indi-
cate the connection, one assumes that kz7/J =2D and
H=7/2, so that kgT./J=mw/2 corresponds to
D./H*=1/m).

In this respect it may seem surprising to find the
abrupt transition at D2/H?=8/m. The analog of the
steepest correlator (6.7) in our study is the kinetic-energy
density of the discontinuous bounded distribution which
diffusively decays as ¢t 2. The relaxation of continuous
fields should not be faster. Thus the kinetic energy is a
curious quantity which undergoes a transition with mir-
ror images in the absence of topological charges. The
transition is a special property of the sharp features of
the potential associated with the Q, distribution. To
clarify this one may calculate the kinetic-energy decay
for the Gaussian distribution

0, ~ exp —Tlﬁfddx[(vmbrmlhz] 6.8)

and find that there is a single crossover time at
t =1/vm?, which is D and d independent. The energy is
given by

Kdemd 2m 2y, d 2
We T —5,2m vt (6.9)

E(t)=

At short times one observes the nonbounded decay (3.6)
and after the crossover the decay reaches its maximum
rate t ~¢/27 ! without any unusual behavior in two dimen-
sions. Thus the onset of bounded behavior is sensitive to
the shape of the potential which provides the boundary:
the parabolic potential of the distribution (6.8) leads to a
behavior different from that of infinite well potential Q,.

Returning to vortices, we note that diffusion equation
and (formally) the Burgers equation may be considered
with random initial conditions having a solenoidal com-
ponent. We are not aware of possible physical applica-
tions, though. It is interesting to mention that for both
equations the decay of vorticity is purely diffusional,
while the potential component may have rich behavior
since it is coupled to the solenoidal component.

VII. BURGERS TURBULENCE:
THE BOUNDED RANDOM INITIAL DISTRIBUTION
IN ONE DIMENSION

We have completed our preliminary steps of deriving
the reference results for diffusion equation and begin to
study the Burgers equation in the form of the field theory
reproduced in Sec. II. The case of the nonbounded initial
condition has been considered in Ref. [1]. We denote as
®(h,y) the density of the function ¢ (1.5) along the &
axis; it is a sum over all the paths terminating at the point
h for a given time y. This function obeys the forward and
backward Schrodinger equation [1] (diffusion equation
with a decay term)

D (h,y)/dy =+D3D /3h*F ug (p)e’>® | (7.1)

which is considered in the strip || < H (cf. Sec. IV). The
boundary conditions are 3, $(+H,y)=0 and the “initial”
condition reflects the uniform distribution in the strip far
from the origin y =0, i.e., far from the potential support
(decay support): ®(h, F o )=1/2H.

Equation (7.1) can be simplified in the limit of zero

viscosity v—0. Introducing the variable
h, = —(2v/A) Inu one can rewrite (1.4) as
(Wy=[" dh,[exp(—e ") =y(h,)]
Zofwdh,,[e(h,,)—:p(hu)], (7.2)

where O(z) is the step function. The decay term in Eq.
(7.1) becomes a & function, i.e., there appears an absorb-
ing curve

h=h,+y*/2\t (71.3)

and a pure diffusion equation
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9d(h,y)/dy =+Dd*® /dh* (7.4)

below this parabolic curve. We can see now that the
Burgers approach [2] is equivalent to the present study in
the limit v—O0.

For some time there is no difference between bounded
and unbounded cases since local properties of the distri-
butions Q, and Q, are almost identical. In the limit of
strong turbulence that we are interested in, t >>v>/D?A%,
the energy decays as [2,1]

22 2/3
2—— ’ (7.5)

E=nq p

where 7 is a number [16]. The averaged height of the
J

— 3

\/8"TDJ’0 m=-—c

®(hy)=[" an exp

_(h—h"+aHm? |
8Dy, P
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corresponding interface problem grows as
(h)=37(D?\t)'/3. This regime ends when the averaged
height approaches the limiting value H, since we have
(h) <H by the above-mentioned boundary conditions.
At later times the parabola (7.2) is quite close to the
upper boundary H. One can then approximate the parab-
ola by making the boundary h =H absorbing within the
region Iyl < Yo, Where

see (7.2). Selecting the forward version of the diffusion
approach (7.4), we start with the function ®(4) uniform
in [—H,H] at the point y =—y,. The solution at the
end of the absorbing region y = +y, is given by

(7.6)

_ (h+h'—2H +4Hm)*

7
8Dy, (1.7

The minus sign here [cf. (4.5)] accounts for the absorbing boundary. It follows from (7.2) that to find the averaged

height (4 ) one has to evaluate the integral

()= ["an, (1~ [* anothyn=H-["[" dn,ah o(hy) . 7.8

Using another representation (A1) of the elliptic functions entering (7.7) one obtains that H — () equals

7°n*Dy,
2H?

’ cos

HrH (H , &
S S, I, dn.dndh 3 exp

With the help of (7.6) one gets the late-time asymptotic
behavior for the averaged height

(hy=g-—1 (7.10)
=H-— 7.10
30D %At
and the kinetic-energy decay
H4
E=——7—. 7.11
30D%t2 710

This is a very fast decay for one-dimensional problem,
faster than the asymptotic behavior of pure diffusion
(4.9). One then expects a second crossover to pure
diffusion if the finite viscosity is allowed back into Eq.
(7.1). The diffusive behavior at late times must be accessi-
ble by direct perturbation in the decay strength. Let us
introduce an auxiliary function

¥)=[" ohyidh, Ww)=y. (7.12)

To zeroth order in u we have ®y(h,y)=1/2H; this is
essentially an adiabatic approximation. Decay influences

the amplitude of the solution; to the first order
®(h,y)=V¥,(y)/2H . (7.13)

Function (7.13) upon substitution into Eq. (7.1) and in-

S h—h") | = cos | Tk +h’—2H)l ]
7 Dyo(2] +1)?
8 rH = P _—Z—Hz— ]
=], 2 20 +1) 7.9
l
tegrating over [ —H, H] has the form
¥, (y)=exp —ufirj(ﬂfiwdyg(y) ) (7.14)

where the Reynolds number is defined as k=AH /2v. As
usual the knowledge of the solution to zeroth order is
enough to calculate the leading behavior of the integrated
properties. Returning to the averaged field 4, which is
given by Egs. (1.4), (7.12), and, to this order, (7.14), we
get

sinhk

(h)=%:iln (7.15)

In terms of (1.2) the formula (7.15) implies that the aver-
aged height ceases to move at late times and saturates at
the level (7.15) below H. We again expect from this result
that the final stage of decay is pure diffusion, since satura-
tion means small gradients and irrelevance of the A term
in (1.2).

One has to determine the correct amplitude of the
diffusionlike decay E(t)xt 3/2 (see Sec. IV for the
derivation of this power law). To go beyond zeroth order
in u regarding Eq. (7.1) we make use of the expansion
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O(h,y)= 1+uu,(h,y)+ yz(h,y)—i—

2H

(7.16)

which is inspired by the WKB approximation. Substitut-
ing (7.16) into Eq. (7.1) and collecting similar terms we
get the equation for first order in u corrections to the
solution
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order. Second order in u gives the equation

dyu;—D3y,p, =g (¥l (7.20)

sinhk —e“’ /2y J

Integrating this equation with the help of Gy we may
represent the quantity of interest I = [ dh p,(h, ») in
the form

0 Y2
3 I= dyzdylg(yl,t)g(yz,t)
3y~ DAy =g (y) %—e“““] : (7.17) o g
X dh,dh,Z(h)Z(h,)
o f_Hf_H 181, 1 2
Its solution is XGslhphi,y,—yy) » (1.21)
(h )_fy d ,J‘H dh'g (y") sinhk a2 where
V=) Y T Z (h)= sinh(k)/k— exp(Ah /2v) . (7.22)
XGylh,h',y —y'), (7.18) The evaluation of the integral (7.21) follows the same
. , ) ] lines as (4.7). We first change variables y =y, —y, and
where thf& appropriate Green’s function ¢ is defined by z=y,+y, and integrate out z. One finds
(4.5). It is easy to check that . 4
H . = © ay —y2/8th
S, dhm(hy)=0, (7.19) V8D Y0 Vy 2K (7.23)
so that there is no contribution to the function ¢ in this where
J
H (H
J(y)= dh,dh,Z(h)Z(h
=" [, dndhZ(h)Z(hy)
- (hy—h,+4Hm)? N (hy+h,—2H +4Hm)? 72
mz exp 4Dy exp 4Dy . .
Changing variables and using symmetry properties of the integrand we obtain
1 © H2
J(y)=4H* | dnp(n) exp | ———(n+2m)* |, (7.25)
y J e 3 P Dy
with
I=n ,_, ’ '
pp=[_ " do'Z(Hoy'=m)Z[H (7' +n)]
—l+7
+fondn’{%Z[H(n—n'-l)]Z[H(n+n’—1)]+%Z[H(l—n—n’)]Z[H(l—n+n’)]}
=%K—2e—-ZK(l+'q)(e2x_e4k_e2K7]__e4m]+2e2x(1+71)__82K(2+n)
+e2x(1+27])+2Ke4x_2Ke4x11_7762xn+2ne2x(1+7])_,'762K(2+71)+2K2ne4x+2K2ne4x'q) .
(7.26)
-
Note that fédnp(n)=0. Now the sum entering (7.25) B w du u?
can be rewritten using (A1). Denoting E (1)=2v9, fo u B 4 —TE’E‘I’OI
f dnp(n)cos(wln) and integrating over y we find
4vH? K &P
o 272 252 = — — . (7.28)
I=4H 3 p exp |2vt 7 erfc | V2wt :»;JZD 7V 2mwvt Dt sinh’c [ 17
= The remaining sum can be evaluated by using the
(7.27) definition of p,; and (7.26),

The applied expansion (7.16) is consistent when D
diffusion in the 4 direction is faster than v diffusion in the
y direction, i.e., D2vt/H*>>1. Using the asymptotic
form of the error function and returning to kinetic ener-
gy, we get

=z Pi w2

2 T Jonten

T (21—42e*+21e* + 30k —30Ke ™
=1

+ 13k + 10x2e 2+ 13k%e*) . (7.29)
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FIG. 1. Log,-log, plot of {4 ) vs time obtained by numerical
integration of Eq. (7.1) and using (1.4) and (7.12). The tilted line
is the Burgers asymptotic dependence {h)=37D'/*(As)'/>.
The horizontal lines are the saturation heights, given by Eq.
(7.15), and the corresponding heights used in simulation are
H =3,5,10,20 from bottom to top. Other parameters used are
D =y=A=1. Larger values of H require too prolonged simula-
tions.

FIG. 2. Log,.-log, plot of kinetic energy E vs time obtained
by using E =23,{h ) and the data of Fig. 1. The long tilted line
is the Burgers asymptotic dependence E =7nD!/*A*3t =23, Oth-
er lines are the asymptotic dependences given by Eq. (7.29). At
these H’s one cannot use Eq. (7.30) yet since the limit of strong
turbulence is not achieved. The transient E ~t 2 behavior just
starts to appear; one may see only an indication of this in the
form of a kinklike bend on the curve with H =20.

In((h))

2 4 6 8 10 12
Int

FIG. 3. Log,-log, plot of (k) vs time obtained by numerical
integration of Eq. (7.4) and absorbing line (7.2) (this is the invis-
cid limit). Solid lines are the Burgers asymptotic dependence
and saturation values {4 ) =H. The corresponding heights used
in simulation are H =3,5,10,20 from bottom to top. Other pa-
rameters used are D =4 and A=1.
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FIG. 4. Log,.-log, plot of kinetic energy E vs time obtained
by using E =A9,(A ) and the data of Fig. 3. The long tilted line
is the Burgers asymptotic dependence and other lines are the
asymptotic dependences given by Eq. (7.11).

The asymptotical form in the limit of strong turbulence
Kk>11is

13v2H?
48V 27D (vt)?/?’

a diffusive decay which differs from (4.9) only by its am-
plitude.

We may now reconstruct the entire decay process. At
short times, when degeneracy of the turbulence is not im-
portant the decay is given by the Burgers formula (7.5).
The averaged height {4 ) approaches H at t,=H>/D?\A.
From the other side the diffusive decay (7.30) applies at
D*vt /H*>>1, when the v diffusion length (vt)!/? exceeds
H?/D. This defines t,=H*/D?, the second crossover
time. The ratio of the two times is ¢, /t; ~«. In the case
of strong turbulence k >>1, these results indicate the ex-
istence of an intermediate regime at t; <<t <<t, (if k <<1,
the entire process is just diffusion). The intermediate re-
gime is described by (7.11). We have made numerical
simulations of Egs. (7.1) and (7.4). The results are shown
in Figs. 1-4.

E(t)= (7.30)

VIII. BURGERS TURBULENCE IN TWO DIMENSIONS

Using the results of Sec. V we introduce the density of
the functional integral (1.6) and by analogy with the
preceding section we write the functional diffusion
(Schrodinger) equation, which this density satisfies,

3,k ($),y]=+D® Fuyg (y)<1>f02"d¢e“<¢>/2v Y
The equation is considered on the space of all h(¢)
profiles and radius time y exceeds the cutoff y >a. The
derivation of the operator D implies that ® is a double
density, with specified initial and final profiles.

We shall only consider the inviscid limit for the non-
bounded case Q. Even in the limit of vanishing viscosity
v the ratio vt /a? should be assumed to be large. The
structure of Eq. (8.1) suggests the change of the time vari-
able z = In(y /V'4vt ). Equation (8.1) can be rewritten as
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2w, 80 & o, |dn |
0.0=D [ o5 ap J 1 s
2T )"[h((ﬁ)—hu]
20 [ 4 27—t O]
fo dexp 2z —e 7 ,

(8.2)

where we selected the forward version and introduced the
familiar parameter h,=—(2v/A)Inu (see Sec. VII).
Equation (8.2) exhibits two decay terms. One of them
comes from the diffusion of strings and the other is gen-
erated by the interaction term in (1.7). By analogy to Sec.
VII, we define a surface

2v

A

above which the interaction-generated decay dominates.
When v—0 the surface (8.3) becomes a plane parallel to
the {y,¢} plane up to the region of large positive z when

J

h(¢,z)=h,+—(e*—2z), (8.3)
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the exponential term in (8.3) can no longer be neglected.
Let us denote these values of z as Z. Below the absorbing
plane h =h, we have the pure diffusion equation (5.17)
with the _ point source at (h,z)=(0,zpin ),
Zmin=In(a/V'vt ). The absorbing surface can be ac-
counted by mirror imaging of this source with opposite
sign. Thus the solution for ® reads

eZ
h(4),0; 4vt’a

ei
»2h,;—,0
h(¢),2h, Aot

O[h(),z]=F -7

(8.4)

with the functional (5.18). This solution has to be in-
tegrated over all final profiles 4 (¢) (or sections of these)
which end below the absorbing surface (8.3). It can be
conveniently done in two steps. First, we integrate over
all profiles which pass through a specified point (Z,¢,);
this leads to the two-point probability P, introduced in
Sec. V. With the help of (7.2) we perform the second step

2‘—zmin
e
4vt

(8.5)

h 7= Znin
_ «© _ u e _
<h>—fO dh, Il f_wdh P |h,0, 5~ P |h,2h,,
- 7T1/2hu
= [ “dhn, erfc =14z z,,) .
0 D(E—_Zmin) T

From the definition of Z it is clear that its time depen-
dence is of the type z=1In(A{%)/2v)~ InInz. With
logarithmic precision one can set Z=0 and obtain

2D 172
(=T |2 ||, (8.6)
a
172
7tV 2In(vt /a?)

'1n~ 1%t is obtained in

The analogous time dependence ¢~
Ref. [4] for a different problem.

We briefly discuss the bounded case. As in one dimen-
sion there is a crossover time which can be found by
equating {h)=H, see Eq. (8.6), t,=(a®/v)e™H' /2D I
the inviscid limit this is the end of the evolution. If v is
finite, kinetic energy quickly falls down and later is of or-
der (a /)%

CONCLUSION

We have presented a detailed study of Burgers tur-
bulence decay in one and two dimensions and we think
that the decay of kinetic energy is more or less under-
stood. In one dimension our realization of the degenerate
turbulence indicates the existence of three-stage relaxa-
tion which serves as a counterexample for the prediction
of the similarity hypothesis based upon the zero
Loitsyanskii correlator. Obviously, the zero correlator
does not fully define the distribution and the existence of
other counterexamples is expected. The results d =2
demonstrate an interesting behavior when the energy de-

[

cay contains logarithmic factors and an explicit cutoff
dependence. Therefore, the scaling (if it exists) is preced-
ed by an exponentially long transient required to ensure
In(vt /a*)>>1. The existence of an exponentially slow
crossover has been recognized earlier in the noise-driven
case [17]. The crossover complicates the physics of the
noise-driven case, where exponents obtained by numeri-
cal simulations are found to be model dependent. We
hope that this paper will stimulate numerical and RG
studies of the initial condition problems. Subsequently,
the exact results from this method, computer simulations,
RG analysis, and, hopefully, the application of the direct
integration approximation by Kraichnan will be instruc-
tively compared at some stage.
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APPENDIX A:
TWO EXPANSIONS OF 6; ELLIPTIC FUNCTION

The following equality is useful in treating mirror im-
ages:
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had 2
2 e—('r]+2m) /x

m 0
_Vmx o | TN s
=YX g e

2 2
_Vax d

1+2 3 e ~Tm /4 cos(mm )

m=

APPENDIX B: FUNCTION g (x) DEFINED BY (6.3)

Consider the limit x >>1. There is a special sequence
s(m)=1,2,3... when logarithmic terms appear in the
expansion of incomplete gamma function and different
corrections to the main dependence acquire logarithms.
One can identify three different situations.

(i) s(0)<1. We find

g (x)=s(0)x *OT(1—5(0)) . (B1)

(i) s(0)=1. There is a logarithmic correction in the
leading order,

at

—Inx _ -2
g(x) . y+96 +0(x"7). (B2)

(iii) s (0)> 1. The leading dependence can be shown to
be

1 {7 T m’s(0) w7t
=—|=5(0 L -
g(x) . 4s( ) tan 2310, 2 Y3
+0(x*M+0(x7? (B3)
with the asymptotics
_ 1 m*+1272—-216 _
xg(x)—s(o)_1 96 +0(s(0)—1),
s(0)—1<1
. . (B4)
T 177 —3
= + +0(s(0 ,
*€ ()= 560s0) + 2155072 T OO
s(0)>1.
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